Classification of patient by analyzing EEG signal using DWT and least square support vector machine
نویسندگان
چکیده
منابع مشابه
Clustering technique-based least square support vector machine for EEG signal classification
This paper presents a new approach called clustering technique-based least square support vector machine (CT-LS-SVM) for the classification of EEG signals. Decision making is performed in two stages. In the first stage, clustering technique (CT) has been used to extract representative features of EEG data. In the second stage, least square support vector machine (LS-SVM) is applied to the extra...
متن کاملHybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine
In hybrid simulation, the structure is divided into numerical and physical substructures to achieve more accurate responses in comparison to a full computational analysis. As a consequence of the lack of test facilities and actuators, and the budget limitation, only a few substructures can be modeled experimentally, whereas the others have to be modeled numerically. In this paper, a new hybrid ...
متن کاملGender Classification from ECG Signal Analysis using Least Square Support Vector Machine
In this present paper it deals with the Gender Classification from ECG signal using Least Square Support Vector Machine (LS-SVM) and Support Vector Machine (SVM) Techniques. The different features extracted from ECG signal using Heart Rate Variability (HRV) analysis are the input to the LS-SVM and SVM classifier and at the output the classifier, classifies whether the patient corresponding to r...
متن کاملLeast square support vector machine based Multiclass classification of EEG signals
This paper describes the pattern recognition technique based on multiscale discrete wavelet transform(MDWT) and least square support vector machine (LS-SVM) for the classification of EEG signals. The different statistical features are extracted from each EEG signal corresponding to various seizer and nonsiezer brain functions, using MDWT. Further these sets of features are fed to the LS-SVM mul...
متن کاملText classification: A least square support vector machine approach
This paper presents a least square support vector machine (LS-SVM) that performs text classification of noisy document titles according to different predetermined categories. The system’s potential is demonstrated with a corpus of 91,229 words from University of Denver’s Penrose Library catalogue. The classification accuracy of the proposed LS-SVM based system is found to be over 99.9%. The fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Science, Technology and Engineering Systems Journal
سال: 2017
ISSN: 2415-6698
DOI: 10.25046/aj0203162